Dibromotri-n-butylphosphinemanganese(II), a Remarkably Close Analogue of Myoglobin

CHARLES A. MCAULIFFE and HUSSEIN AL-KHATEEB

Department of Chemistry, University of Manchester, Institute of Science and Technology, Manchester M60 1QD, U.K. Received June 3, 1980

Upon contact with dioxygen colorless solutions of $Mn(PR_3)X_2$ begin to color as the complex Mn- $(PR_3)X_2 \cdot O_2$ forms [1, 2]. The formation of the latter is a function of the partial pressure of dioxygen and since this can be followed spectrophotometrically it is possible to construct dioxygen-binding curves or 'isotherms' for solution dioxygenation. That these $Mn(PR_3)X_2$ complexes do bind dioxygen in solution is shown in Fig. 1, a plot of dioxygen absorbed (measured by gas burette) against complex concentration. The slope of almost exactly 1 indicates a 1:1 stoichiometry $Mn(PR_3)X_2 \cdot O_2$ in solution and the value of the intercept 7.8×10^{-4} mole dioxygen

Fig. 1. Plot of dioxygen absorption as a function of complex concentration in 100 cm³ THF. Slope = 1.02; intercept = 7.8×10^{-4} mole O₂.

for 100 cm³ tetrahydrofuran corresponds almost exactly to that obtained for a 100 cm³ THF blank (8.05 \times 10⁻⁴ mole O₂). In all experiments described here light-scattering measurements were also carried out to ensure that we dealt with real solutions in all cases.

The equilibrium constant for binding of dioxygen

$$Mn(PR_3)X_3 + O_2 \xleftarrow{K_{O_2}} Mn(PR_3)X_2 \cdot O_2$$

can be calculated from this isotherm and by the use of the Hill equation [3-8], Fig. 2:

$$\frac{Y}{1-Y} = \frac{[Mn(PR_3)X_2 \cdot O_2]}{[Mn(PR_3)X_2]} = K_{O_2} \cdot P_{O_2}^n$$
$$= (P_{1/2}^{O_2})^{-1} \cdot P_{O_2}^n$$

where Y is the fraction of the dioxygenated sites, K_{O_2} is the equilibrium constant for the reaction, $P_{1/2}$ is the partial pressure at half oxygenation (*i.e.* P_{O_2} at which 50% of the sites are dioxygenated).

Fig. 2. Hill plots for $Mn(PBu_3^n)Br_2$ (computer assisted).

We report here equilibrium constants at 20 °C for dioxygenation of the complexes $Mn(PR_3)Br_2$ ($R_3 = Me_2Ph, Pr_3^n, Bu_3^n$) and $Mn(PPr_3^n)Cl_2$ in a number of solvents, Table I. From the isotherms for Mn-

TABLE I. Equilibrium Data for Dioxygen Uptake by Mn(PR₃)X₂ at 20 °C.

Complex	Solvent	log K (torr ⁻¹)	K ₀₂ (torr ⁻¹)	$P_{1/2}^{O_2}$ (torr)	Hill Coeff. n
Mn(PBu ₃ ⁿ)Br ₂	THF toluene 1,2-C ₂ H ₄ Cl ₂	-1.320 -0.429 -0.429	$\begin{array}{c} 0.479 \times 10^{-1} \\ 3.72 \times 10^{-1} \\ 3.82 \times 10^{-1} \end{array}$	20.9 2.7 2.6	1.12 0.68 0.94
Mn(PPr ₃ ⁿ)Br ₂	THF toluene	-1.073 -0.251	$\begin{array}{rrr} 0.85 & \times 10^{-1} \\ 5.61 & \times 10^{-1} \end{array}$	11.8 1.8	0.86 0.54
Mn(PPr ⁿ ₃)Cl ₂	THF toluene	-2.707 -1.565	$\begin{array}{rrr} 0.20 & \times 10^{-2} \\ 2.72 & \times 10^{-2} \end{array}$	509 37	1.35 1.02
$Mn(PPhMe_2)Br_2$	toluene	-1.320	0.479×10^{-1}	20.9	1.12

 $(PBu_3^n)Br_2$ it is readily seen that the shape and position of the curve is solvent dependent, Fig. 3. In noncoordinating solvents such as toluene or 1,2-dichloroethane the curves are strikingly reminiscent of the hyperbolic curve of myoglobin [8], whereas the shape of isotherm for tetrahydrofuran solution indicates a more complex interaction, presumably involving solvent participation.

The values of K_{O_2} , Table I, vary between 0.5 \times 10– 2 and 2.8 \times 10– 1 , and $P_{1/2}^{O}$ varies between 3.55 and 200 torr. These variations show the dependence of the affinity of dioxygen for these $Mn(PR_3)X_2$ complexes on (a) the solvent employed, (b) the R group on the phosphine, and (c) the halide, and from Table I it may be deduced that affinity for dioxygenation binding is solvent-dependent in the order $1,2-C_2H_4Cl_2 > toluene > THF$, and on changing the phosphine varies $PPr_3^n > PBu_3^n > PPhMe_2$.

In Table II is listed some K_{O_2} and $P_{1/2}$ values for both natural and synthetic binders of dioxygen.

Fig. 3. Dioxygen binding curves for Mn(PBu₃ⁿ)Br₂.

TABLE II. Comparison of Dioxygen Affinities of Natural and Synthetic Binders.

Compound	Solvent	(torr^{-1})	P ^O 2 (torr)	Temp. (°C)	Ref.
Mb	Water	1.54	0.65	20	7,8
СоМь		1.85×10^{-2}	54	20	5
Co(TpivPP)(N-MeIm)	Toluene	7.14×10^{-1}	140	20	6
Mn(TPP)PBu ₃ ⁿ	Toluene	3.02×10^{-9}	331×10^{-6}	78	3,7
Mn(PPr ⁿ ₃)Br ₂	Toluene	5.16×10^{-1}	1.8	20	this work
$Mn(PBu_3^n)Br_2$	$1,2-C_2H_4Cl_2$	3.82×10^{-1}	2.6	20	this work

From this and the Fig. 3 it can be seen that Mn- $(PBu_3^n)Br_2$ in 1,2-dichloroethane is a remarkably close analogue of myoglobin.

References

- 1 (a) C. A. McAuliffe, H. Al-Khateeb, M. H. Jones, W. Levason, K. Minten and F. P. McCullough, J. Chem. Soc. Comm., 736 (1979);
 - (b) Patent Cooperation Treaty, Application Number PCT/GB79/0038, International Publication Number WO 79/00696.

- 2 M. Barber, R. Bordoli, A. Hosseiny, K. Minten, C. P. Perkin, R. D. Sedgwick and C. A. McAuliffe, Inorg. Chim. Acta, 210 (1980), in press.
- 3 M. J. Carter, D. P. Rillema and F. Basolo, J. Am. Chem. Soc., 96, 392 (1974).
- 4 L. S. Chen, M. E. Koehler, B. C. Pestel and S. C. Cummings, J. Am. Chem. Soc., 100, 7248 (1978).
- 5 J. P. Collman, Accounts Chem. Res., 10, 265 (1977).
- 6 J. P. Collman, J. I. Brauman, K. M. Doxsee, T. R. Halbert, S. E. Hayes and K. S. Suslick, J. Am. Chem. Soc., 100, 2761 (1978).
- 7 R. Jones, D. A. Summerville and F. Basolo, Chem. Rev., 79.139 (1979).
- 8 For the extremely lucid discussion of equilibria in dioxygen proteins see L. Stryer, 'Biochemistry', Freeman and Co., San Francisco (1975).